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The infinite-dimensional Lie algebra

[Jam1,m2
, Jbn1,n2

] =

eis(m1e
−an2−m2e

an1)Ja+b
m1+ean1,m2+e−an2

− eis(n1e
−bm2−n2e

bm1)Ja+b
n1+ebm1,n2+e−bm2

,

contains as subalgebras or limits most Lie algebras utilized in

physics: GL(N), Classical Lie, Moyal, Poisson, Virasoro, Vertex...

(Arbitrary indices, a, b, m1,m2, .. and parameter s, unless restricted by

further expediency).



• Underlain by the noncompact oscillator group G (or H4, W Miller:

the solvable, rank 2, dimension 4, Lie group generated by the oscilla-

tor creation and annihilation operators, their Heisenberg commutator—

central—and the occupation number operator).

• It satisfies the Jacobi identity; evident, as it merely amounts to the

antisymmetrization of the associative (finite dimensional Lie group)

product,

Jam1,m2
Jbn1,n2

= eis(m1e
−an2−m2e

an1)Ja+b
m1+ean1, m2+e−an2

.

Associativity means (Jam1,m2
Jbn1,n2

)Jck1,k2
= Jam1,m2

(Jbn1,n2
Jck1,k2

).

• The symmetrization of this product into an anticommutator further

yields a consistent graded extension of the infinite Lie algebra. (The

generators of the infinite-dim Lie algebras are exponentials of finite-dim

Lie algebras.) Center: J0
0,0 = Jam1,m2

J−a
−e−am1,−eam2

.

• Applications in deconstruction, noncommutative QFT, and possibly

twisted CFT, and...
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On the unit T2, (x, p range from 0 to 1), Groenewold’s 1946 associative

?-product,

? ≡ e−is(
←
∂ x
→
∂ p−

←
∂ p
→
∂ x) ,

allows strings of operators of the form f(x, p)?, for any functions f(x, p),

to be equivalently evaluated, indifferently to the grouping of the non-

commutative multiplications chosen.

In a Fourier mode basis, for integers m1,m2,

Mm1,m2 ≡ exp(i(m1x+m2p)) ? ,

the standard product law follows,

Mm1,m2Mn1,n2 = exp (is(m1n2 −m2n1)) Mm1+n1,m2+n2
,

yielding the Sine Algebra when antisymmetrized. (The finite Lie group

underlying this product is just the dimension 3 Heisenberg group.)



• Consider a phase-space-area-preserving dilation operator D(a), which
braids associatively as

D(a) f(x, p) = f(eax, e−ap) D(a) ,

D(a)D(b) = D(a+ b), D(0) = 11.

; It formally commutes with the star product,

D(a) ? = ? D(a) = exp

(

−is(
←
∂ x
→
∂ p −

←
∂ p
→
∂ x)

)

exp

(

a(x
→
∂ x −p

→
∂ p)

)

,

This one acts differently on the left and right arguments (branes), vir-

tually like a sheared star product.

; The Atavistic Algebra elements Jam1,m2
may be constructed out of

Mm1,m2D(a),

Jam1,m2
= ei(m1x+m2p) es(m1∂p−m2∂x) ea(x∂x−p∂p).

; sequential rescalings and shifts of a function’s variables, and overall

multiplication by a phase,

Jam1,m2
f(x, p) = ei(m1x+m2p) f(ea(x− sm2), e

−a(p+ sm1)).

But, since x and p commute,



; Coherent state realization,

Jam1,m2
= eim1α

†−2sm2α ea α†α ,

underlain by (dim 4, rank 2) oscillator group.

• a→ 0 yields the (FFZ) sine algebra, (Moyal Bracket algebra),

hence classical Lie algebras, Poisson, Virasoro, ...

m2 → 0, yields the (FZ) vertex algebra.
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No faithful matrix (finite-dim) representations. For restricted param-

eters, unfaithful ones are based on Sylvester’s (1882) clock and shift

matrices for GL(p).

Choose s = −π/p for an odd prime p, # exp(−2is) ≡ ω = e2πi/p, with

ωp = 1; take integer subscripts mod p, mj = 0,1,2, ..., p−1; and rescaled

superscripts to be integer mod p−1, ã ≡ a/ ln 2 = 0,1,2, ..., p−2, recalling

cyclicity: 2p−1 = 1 mod p, for any odd prime integer p.

# The product now reads

J ãm1,m2
J b̃n1,n2

= ω(2ãm2n1−2p−1−ãm1n2)/2 J ã+b̃
m1+2ãn1, m2+2p−1−ãn2

.

Represented by Sylvester’s p× p unitary unimodular matrices,

Qrt = ωrδr,t , Prt = δr+1,t ,

for r, t defined mod p, r = 0,1,2, ..., p− 1. ;

Qp = P p = 11, PQ = ω QP.



The complete set of p2 unitary unimodular p× p matrices

M(m1,m2)
≡ ωm1m2/2Qm1Pm2, =⇒ [M(m1,m2)

]rt = ωm1(r+m2/2)δr+m2,t ,

where M
†
(m1,m2)

=M(−m1,−m2)
, and TrM(m1,m2)

= p δm1,0 δm2,0 , suffice

to span the group of GL(p).

But since

M(m1,m2)
M(n1,n2)

= ω(m2n1−m1n2)/2 M(m1+n1,m2+n2)
,

they further satisfy the Lie algebra of SU(p), a restriction of the Sine

Algebra (FFZ, 1989),

[M(m1,m2)
,M(n1,n2)

] = 2i sin
(

π
p(m2n1 −m1n2)

)

M(m1+n1,m2+n2)
.

In addition, consider the discrete scaling (doubling) matrix (Vourdas)

Rrt ≡ δ2r,t , Rp−1 = 11, R† = RT = Rp−2,

for r, t defined mod p: r, t = 0,1,2, ..., p− 1.

The cyclic structure holds by virtue of the identity 2p−1 = 1 mod p.

RQRp−2 = Q2, Rp−2PR = P2.



RãQm1Pm2Rp−1−ã = Q2ãm1P2p−1−ãm2,

# p-dimensional unitary matrix representation,

J ã
m1,m2

≡M(m1,m2)
Rã = ωm1m2/2Qm1Pm2Rã.

However, since Sylvester’s basis is complete, R is representable in terms

of the above p2 Ms—in fact, it is the phased sum of all p× p matrices

M , normalized by p, since, ∀m1,m2,

Tr M(m1,m2)
R = ω−3m1m2/2 . =⇒

pJ 1
0,0 −

∑

m1,m2
ω−3m1m2/2 J 0

m1,m2
= 0 ,

is represented trivially: the representations displayed are not faithful.



> Generalization of D(a) to linear canonical transformations Sp(2)

(Bogoliubov transformations)—associativity preserved.

• Application to systems where there is transvection shear between

the two sides of a ?-product, e.g. on a deconstruction brane lattice link,

squeezed states, Bogoliubov transformations...
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